LABORATORY BUILDING AT BLINDERN

A collection of research

CONTENTS

- I. References
- 2. Typical labs
- 3. Equipment / systems
- 4. Common model organisms

Louis Kahn, Salk Institute og Biological Studies

Laboratory Ullevaal, Oslo ØKAW Arkitekter

Folkehelseinstituttet ØKAW arkitekter

Top: Frank Lloyd Wright, Johnson Wax Bottom: Louis Kahn, Salk Institute

Alvaro Siza, Novartis Campus, Basel

Louis Kahn, Salk Insitute

Top: Section, showing interstitial floor

Bottom: Plan of the South Laboratory Building, upper level - west.

Marie Curie (1867-1934) in her Laboratory in the Sorbonne, Paris 1911. She was a physicist and chemist who conducted pioneering research on radioactivity.

Johnson Wax Research Tower plan diagram, Frank Lloyd Wright

- Supply
 Elevator
- 3. Stairs
- 4.Toilet
- 5. Exhaust

Figure 1.6 Typical lab at Ullèval Hospital.

field Foundation,* and time has shown that the planning dimensions developed as part of this study still have validity.

Laboratory tasks typically involve two elements, equipment and somebody to operate it. Sometimes two tasks occur with the operators back to back (see Fig. 1.7). Work tops are conveniently about 600 mm (23.622 inches) deep with 150 mm (5.905 inches)† behind them for wall-mounted services; an operator occupies a similar space. When these dimensions are added together, and circulation space is added as well, a working dimension

is derived which is a measure of most laboratory

An interval about 3.5 meters between the center line of laboratory partitions—and 3.6 meter (11.811 ft.) is a convenient, duodecimal number—will allow space in which two people may work back to back at equipment and a third person may pass between them. This is an ergonomic measure, and it is as true for the different sorts of equipment which nowadays make up the armamentary of the laboratory worker as it has always been (see Fig. 1.8). The fact that wall and floor space, once used for benches, is now often used for electronic equipment makes no difference. A planning module of 3.6 meters (11.811 ft) × 7.2 meters (23.622 ft) is available within the same plan discipline, and a room may be increased further in 3.6-meter steps.

^{*}Nuffield Foundation Division for Architectural Studies, *The Design of Research Laboratories*, Oxford University Press, London, 1961.

[†]Metric to customary conversions given are not rounded.

Top: Frick Chemistry, Princeton University Bottom: Hopkins Building

Clean room

Harry Perkins Insitute of Medical Research, Australia

Renzo Piano + Payette, Harvard Art Museums Renovation and Expansion

Hopkins + Payette, Frick Chemistry Laboratory, Princeton

BSL-4 laboratory, chemical shower, to use when exiting.

Top: Exiting a BSL-4 laboratory (Texas, US) Bottom: Typical BSL-3 laboratory

Top: Laboratory gas piping systems Bottom: Schematic lab structure with interstitial floor

Air supply and air flow.

Top: Air supply diagram at Princeton University Chemistry building Bottom: Decentralized ventilation systems

Top: Ergonomic dimensions for laboratory work.

Electron microscope

Biosafety cabinets.

Positive pressure personnel suits (PPPS), used when working in BSL-4 laboratories.

Mouse storing systems, University of Bergen

Top: IVC mouse rack (individually ventilated cages for mice) Bottom: Barnes maze, used to measure spatial learning and memory in animals.

Top: confocal microscopy Bottom: sentrifuges

Arabidopsis thaliana, Thale cress, the most common model plant.

Drosophila melanogaster, fruit fly.

Xenopus laevis, African clawed frog.

Xenopus tropicalis, western clawed frog.

Escherichia coli, E.coli.

Saccharomyces cerevisiae, yeast.

Dictyostelium discoideum, slime mold.

Danio rerio, zebra fish.

Caenorhabditis elegans, C. elegans

 ${\it Chlamy domonas\ reinhardtii, C.\ reinhardtii.}$

Mus musculus, house mouse.

Rattus Norvegicus, brown rat.

