## Utopia in dystopia

Narration of an Arctic airport city

### Utopia in dystopia

- Narration of an arctic airport city

Name: Zhiyuan Liu Semester : 2017 Spring Supervisors: Luis Callejas; Peter Hemmersam

AHO Oslo School of Architecture and Design, Institute of Landscape and Urbanism "All material including photographs and maps, unless otherwise stated, is by the author."

### CONTENT

| Preface                                     | 3  |
|---------------------------------------------|----|
| The unpredictable                           |    |
| Landscape patterns and slush risk interface | 7  |
| Avalanche risk                              | 8  |
| Tomorrow is not promised                    | 10 |
| The existence of an Arctic city             | 12 |
| The vernacular language of site             | 14 |
| The relocation plan                         | 16 |
| Airport cities expansion                    | 18 |
| Airport cities EU                           | 20 |
| Airport cities NORWAY                       | 22 |
| Configuration                               | 24 |
| Structure                                   | 26 |
| Terminals                                   | 28 |
| <u>Cities without boundary</u>              |    |
| TOS                                         | 32 |
| OSL                                         | 34 |
| Ice break and habour                        | 36 |
| terminal types                              | 38 |
| Existing urban patterns                     | 40 |
| Terminals                                   | 42 |
| Insight of risks buildings                  | 44 |
| Design of disassemble                       | 46 |
| Slop mitigation tipotype                    | 48 |
| Processing of Arctic airport city           | 50 |
| LYR masterplan                              | 52 |
| Site section I                              | 54 |
| Site section II                             |    |
| Site section III                            | 58 |
| lso                                         | 60 |





### Preface

### The unpredictable

The winter of 2015, avalanches happens without notice and any alarm in advance. Residents life is posed under risks. Avalanches often follows almost the same path from year to year. Especially in recent year it happens more frequently.



Photo: Svalbardposten





Landscape patterns and slush risk interface, situation between airport and city. GEOLOGICAL, LANDSCAPE PATTERNS, SLUSH AND AVALANCHE RISKS INTERFACE



# **Avalanche** risk Longyearbyen, Svalbard Risk area in the big Longyearbyen area. *uary 2016* 28 edalen Gruve7 R 9 2KM 8KM



Tomorrow is not promised Abstraction vulnerable Houese and roads 78°13'N 15°33'E

## Tomorrow is not promised

#### Abstraction

Vulnerable houses and roads



## The existence of an Arctic city

#### KIRUNA, SWEDEN

#### HEIMAEY ISLAND

Relocation

Dfence lava-cooling operation

#### DIAVIK DIAMOND MINE, CANADA

Reinforcement Huge water retention dikes were constructed to safeguard mining facilities and accomodations.

#### NEWTOK, ALASKA

Abandon Coastal Erosion



#### The Vernacular Language of the Landscape

Spatial and morphological characters through the longyearbyen Gemometries

Study Sketches Study Sketches of the volume and Shape through the scene & Geology

## The Vernacular Language

In spite of the decreasing of long history of mining industrial, scientific research and tourism is increasing. During the summer time the airport and the city is experiences a very high traffic peak.



# The action

17

A relocation plan of the risk communities to the airport is triggered, a relatively safe area in the extreme Arctic climate. It's not only considering the demand of futher airport capacity and the safety of risk resident. It also an opportunity to experiment the development of an Arictic city.

Temporary

Temporary



## Airport cities Expansion

#### Expansion

Different type of airport cities expansion.



## Airport cities EU

#### Configuration

Different type of airport cities in the Europ context.









OSL

BGO



SVG



TOS

TRF



EVE



ALF



BOO

MOL









22

HFT

## **Airport cities** NORWAY





TRD





HAU

#### Configuration

Selected norwegian airports analysis

Airport cities often combines different types configutations response to the demand of use. More condensed area near the terminl while more loose in the other side of the runway.

The topotype urbanism structure also can be seen: grid / linear / Radiate / Cluster and so on.

KRS



KSU





KKN







FRO

BDU

24

## **Airport cities** NORWAY





#### Configuration

Selected norwegian airports analysis













TOO)

KSU





26

## Airport cities NORWAY



Selected norwegian airports analysis























SKN



LYR













OSL

28

HAU

1

воо

## Airport cities NORWAY



#### Terminals

Selected norwegian airports analysis

29





## Cities without boundary

#### Not that far Arctic

Regional and global interface.

The closer to the airport, more interchange between landside and air-side in required.

OSL - LYR 2h50 TOS - LYR 1h42



## Airport city TOS

#### Composition

Airport city Runway Terminal configuration

TOS - LYR 1h42



## Airport city OSL

#### Composition

Airport city Runway Terminal configuration

OSL - LYR 2h50

| Month                                  | Activity                          | % of total                         | Determination of Existing ADPM                                                       |
|----------------------------------------|-----------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| January<br>Febuary<br>March<br>April   | 3000<br>6000<br>12,000<br>12,000  | 2,58%<br>5.17%<br>10.34%<br>10.34% | Peak month activity = 16,000<br>Average day activity = 516.129<br>(16,000 / 31 days) |
| May<br>June                            | 14,980<br>12,000                  | 12.91%<br>10.34%<br>10.34%         | Determination of Forecast ADPM                                                       |
| July<br>August<br>September<br>October | 12,000<br>16,000<br>10000<br>8000 | 13.79%<br>8.62%<br>6.89%           | Forecast annual activity = $20,800$<br>Forecast peak month activity = $27,58$        |
| November<br>December<br>Anual total    | 6000<br>4000<br>115.980           | 5.17%<br>3.44%<br>100%             | (20,800 x 13.79%)<br>Forecast average day activity = 671<br>(20,800 / 31 days)       |

#### Terminal capacity calculation

Annual activity can be used to determine order-of-magnitude facility requirements

# Forecasting terminal capacity

#### Site analysis

Future capacity expansion



## Ice break and Habour



#### Configuration

Different type of airport cities in the Europ context.







Platform - Focused Approach

Airport logistic prefer a platform focused approaches

## Terminal expansion

#### Focused

A focused platform enables high interchage activities. In the Arctic context which reduces distance when weather condition is not good. Offers high accessibility.









ccupants: Residents wner: Mine companly





#### **INSIGHT OF BUILDINGS**

REVEALS RESIDENTIAL HOUSING CRISIS



HOUSING UNIT 1 Design for disassembly

**REUSE ROOF** 

**REUSE ROOF** 

VACANT SRUCTURE

**SPATIAL FORM** 





Study model of the mitigation of slope near runway





Existing situation of airport / Risks interface



CONCENTRAED



GRID

The processing of airport city S t u d y m o d e l :testing different configurations.



RADIATE



CLUSTER





















### AL, SUMMER TIME

