Introduction to material technology
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Bibendum est ultricies integer quis. Mauris vitae ultricies leo integer malesuada...

The physical properties of materials

The mechanical properties of materials

Materials
- Wood
- Glass
- Ceramics
- Concrete
- Metals
- Composites
- Membranes
- Textiles
- Cardboard
Scroll through topics

CURRICULUM

Introduction to material technology
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Bibendum est ultricies integer quis.
Iaculis urna id volutpat lacus laoreet. Mauris vitae ultricies leo integer malesuada...

The physical properties of materials

The mechanical properties of materials

Materials
Wood
Glass
Ceramics
Concrete
Metals
Composites
Membranes
Textiles
Cardboard
There are different preferences when it comes to learning. How do you want to learn today? It’s up to you. Don’t worry you can change it any time you want.

Text
The good old way of receiving the subject material.

Illustration
Illustration is a visually based way of receiving the subject material.

Video
Learn through video. Watch a pre-recorded lecture or an experiment.

Audio
The subject material is read aloud for you.

Interactive
Interactive learning means using games or interactive courses. There are some physical games as well that can be lent out at the library.

Demo / Example
This mode focuses on ‘reality’ and presents use cases and examples for practical use. The subject matter put in a context that is relevant for you.

Physical
This mode takes learning out of the digital domain. There are different kits that can be lent from the library.

Summary
You want it short and straight to the point? This mode gives it to you.
There are different preferences when it comes to learning. How do you want to learn today? It's up to you. Don't worry you can change it any time you want.

Text
The good old way of receiving the subject material.

Illustration
Illustration is a visually based way of receiving the subject material.

Video
Learn through video. Watch a pre-recorded lecture or an experiment.

Audio
The subject material is read aloud for you.

Interactive
Interactive learning means using games or interactive courses. There are some physical games as well that can be lent out at the library.

Demo / Example
This mode focuses on 'reality' and presents use cases and examples from practical use. The subject matter is put in a context that is relevant for you.

Physical
This mode takes learning out of the digital domain. There are different kits that can be lent from the library.

Summary
You want it short and straight to the point? This mode gives it to you.
Mass density is a physical size, expressed as the mass of a quantity of substance divided by the volume of the substance. Mass density is also called density. Density is usually measured in kg per cubic meter.

The symbol for mass density is ρ (the Greek letter rho). When the mass is m and the volume is V, the mass density can be expressed as

$$\rho = \frac{m}{V}$$

Density is also referred to as specific weight, but this term is misleading and should be avoided.

The SI unit for density is kg / m3. Derived units that are widely used are kg / dm3 and g / cm3. In the United States, the unit also uses pound / cubic foot (lb / ft3):

$$1 \text{ lb/ft}^3 = 16.019 \text{ kg/m}^3$$

The definition of density assumes that the substance is homogeneous. This is not always the case; for example, the atmosphere has a higher density along the ground than higher up. Calculated mass density then becomes an expression of average mass density in the area being measured.

Relative bulk density

Relative mass density is often defined as the ratio of mass density to two substances, and this unit is thus dimensionless.

In the case of liquids, specific densities are often stated in relation to water, while air is often used as a reference in relation to gases.

Variation in mass density

The density of a substance varies with temperature and pressure. For solids and
Mass density is a physical size, expressed as the mass of a quantity of substance divided by the volume of the substance. Mass density is also called density. Density is usually measured in kg per cubic meter.

The symbol for mass density is \(\rho \) (the Greek letter rho). When the mass is \(m \) and the volume is \(V \), the mass density can be expressed as

\[
\rho = \frac{m}{V}
\]

Density is also referred to as specific weight, but this term is misleading and should be avoided.

The SI unit for density is kg / m\(^3\). Derived units that are widely used are kg / dm\(^3\) and g / cm\(^3\). In the United States, the unit also uses pound / cubic foot (lb / ft\(^3\)):

\[
1 \text{ lb/ft}^3 = 16.019 \text{ kg/m}^3
\]

The definition of density assumes that the substance is homogeneous. This is not always the case; for example, the atmosphere has a higher density along the ground than higher up. Calculated mass density then becomes an expression of average mass density in the area being measured.

Relative bulk density
Relative mass density is often defined as the ratio of mass density to two substances, and this unit is thus dimensionless.

In the case of liquids, specific densities are often stated in relation to water, while air is often used as a reference in relation to gases.

Variation in mass density
The density of a substance varies with temperature and pressure. For solids and
Mass density is a physical size, expressed as the mass of a quantity of substance divided by the volume of the substance. Mass density is also called density. Density is usually measured in \textbf{kg per cubic meter}.

The symbol for mass density is ρ (the Greek letter rho). When the mass is m and the volume is V, the mass density can be expressed as

$$\rho = \frac{m}{V}$$

Density is also referred to as specific weight, but this term is misleading and should be avoided.

The SI unit for density is \textbf{kg / m3}. Derived units that are widely used are \textbf{kg / dm3} and \textbf{g / cm3}. In the United States, the unit also uses \textbf{pound / cubic foot (lb / ft3)}:

$$1 \text{ lb / ft}^3 = 16.019 \text{ kg / m}^3$$

The definition of density assumes that the substance is homogeneous. This is not always the case; for example, the atmosphere has a higher density along the ground than higher up. Calculated mass density then becomes an \textbf{expression} of average mass density in the area being measured.

Relative bulk density

Relative mass density is often defined as the ratio of mass density to two substances, and this unit is thus dimensionless.

In the case of liquids, specific densities are often stated in relation to water, while air is often used as a reference in relation to gases.

Variation in mass density

The density of a substance varies with temperature and pressure. For solids and...
Mass density is a physical size, expressed as the mass of a quantity of substance divided by the volume of the substance. Mass density is also called density. Density is usually measured in kg per cubic meter.

The symbol for mass density is ρ (the Greek letter rho). When the mass is m and the volume is V, the mass density can be expressed as

$$\rho = \frac{m}{V}$$

Density is also referred to as specific weight, but this term is misleading and should be avoided.

The SI unit for density is kg / m3. Derived units that are widely used are kg / dm3 and g / cm3. In the United States, the unit also uses pound / cubic foot (lb / ft3):

$$1 \text{ lb / ft}^3 = 16.019 \text{ kg / m}^3$$

The definition of density assumes that the substance is homogeneous. This is not always the case; for example, the atmosphere has a higher density along the ground than higher up. Calculated mass density then becomes an expression of average mass density in the area being measured.

Relative bulk density
Relative mass density is often defined as the ratio of mass density to two substances, and this unit is thus dimensionless.

In the case of liquids, specific densities are often stated in relation to water, while air is often used as a reference in relation to gases.

Variation in mass density
The density of a substance varies with temperature and pressure. For solids and
Mass density is a physical size, expressed as the mass of a quantity of substance divided by the volume of the substance. Mass density is also called density. Density is usually measured in kg per cubic meter.

The symbol for mass density is ρ (the Greek letter rho). When the mass is m and the volume is V, the mass density can be expressed as

$$\rho = \frac{m}{V}$$

Density is also referred to as specific weight, but this term is misleading and should be avoided.

The SI unit for density is kg / m3. Derived units that are widely used are kg / dm3 and g / cm3. In the United States, the unit also uses pound / cubic foot (lb / ft3):

$$1 \text{ lb / ft}^3 = 16.019 \text{ kg / m}^3$$

The definition of density assumes that the substance is homogeneous. This is not always the case; for example, the atmosphere has a higher density along the ground than higher up. Calculated mass density then becomes an expression of average mass density in the area being measured.

Relative bulk density
Relative mass density is often defined as the ratio of mass density to two substances, and this unit is thus dimensionless.

In the case of liquids, specific densities are often stated in relation to water, while air is often used as a reference in relation to gases.

Variation in mass density
The density of a substance varies with temperature and pressure. For solids and
Mass density is a physical size, expressed as the mass of a quantity of substance divided by the volume of the substance. Mass density is also called density. Density is usually measured in kg per cubic meter.

The symbol for mass density is \(\rho \) (the Greek letter rho). When the mass is \(m \) and the volume is \(V \), the mass density can be expressed as

\[\rho = \frac{m}{V} \]

Density is also referred to as specific weight, but this term is misleading and should be avoided.

The SI unit for density is kg / m\(^3\). Derived units that are widely used are kg / dm\(^3\) and g / cm\(^3\). In the United States, the unit also uses pound / cubic foot (lb / ft\(^3\)):

1 lb / ft\(^3\) = 16.019 kg / m\(^3\)

The definition of density assumes that the substance is homogeneous. This is not always the case; for example, the atmosphere has a higher density along the ground than higher up. Calculated mass density then becomes an expression of average mass density in the area being measured.

Relative bulk density
Relative mass density is often defined as the ratio of mass density to two substances, and this unit is thus dimensionless.

In the case of liquids, specific densities are often stated in relation to water, while air is often used as a reference in relation to gases.

Variation in mass density
The density of a substance varies with temperature and pressure. For solids and
PART 1 : INTRODUCTION TO MATERIAL TECHNOLOGY

DENSITY

Mass density is a physical size, expressed as the mass of a quantity of substance divided by the volume of the substance. Mass density is also called density. Density is usually measured in kg per cubic meter.

The symbol for mass density is \(\rho \) (the Greek letter rho). When the mass is \(m \) and the volume is \(V \), the mass density can be expressed as

\[\rho = \frac{m}{V} \]

Density is also referred to as specific weight, but this term is misleading and should be avoided.

The SI unit for density is kg / m\(^3\). Derived units that are widely used are kg / dm\(^3\) and g / cm\(^3\). In the United States, the unit also uses pound / cubic foot (lb / ft\(^3\)):

\[1 \text{ lb} / \text{ft}^3 = 16.019 \text{ kg} / \text{m}^3 \]

The definition of density assumes that the substance is homogeneous. This is not always the case; for example, the atmosphere has a higher density along the ground than higher up. Calculated mass density then becomes an expression of average mass density in the area being measured.

Relative bulk density

Relative mass density is often defined as the ratio of mass density to two substances, and this unit is thus dimensionless.

In the case of liquids, specific densities are often stated in relation to water, while air is often used as a reference in relation to gases.

Variation in mass density

The density of a substance varies with temperature and pressure. For solids and...
Mass density is a physical size, expressed as the mass of a quantity of substance divided by the volume of the substance. Mass density is also called density. Density is usually measured in kg per cubic meter.

The symbol for mass density is \(\rho \) (the Greek letter rho). When the mass is \(m \) and the volume is \(V \), the mass density can be expressed as

\[
\rho = \frac{m}{V}
\]

Density is also referred to as specific weight, but this term is misleading and should be avoided.

The SI unit for density is kg / m\(^3\). Derived units that are widely used are kg / dm\(^3\) and g / cm\(^3\). In the United States, the unit also uses pound / cubic foot (lb / ft\(^3\)):

\[
1 \text{ lb / ft}^3 = 16.019 \text{ kg / m}^3
\]

The definition of density assumes that the substance is homogeneous. This is not always the case; for example, the atmosphere has a higher density along the ground than higher up. Calculated mass density then becomes an expression of average mass density in the area being measured.

Relative bulk density

Relative mass density is often defined as the ratio of mass density to two substances, and this unit is thus dimensionless.

In the case of liquids, specific densities are often stated in relation to water, while air is often used as a reference in relation to gases.

Variation in mass density

The density of a substance varies with temperature and pressure. For solids and
Density is a physical size, expressed as the mass of a quantity of substance divided by the volume of the substance. Mass density is also called density. Density is usually measured in kg per cubic meter.

The symbol for mass density is ρ (the Greek letter rho). When the mass is m and the volume is V, the mass density can be expressed as

\[\rho = \frac{m}{V} \]

Density is also referred to as specific weight, but this term is misleading and should be avoided.

The SI unit for density is kg / m³. Derived units that are widely used are kg / dm³ and g / cm³. In the United States, the unit also uses pound / cubic foot (lb / ft³):

\[1 \text{ lb} / \text{ft}^3 = 16.019 \text{ kg} / \text{m}^3 \]

The definition of density assumes that the substance is homogeneous. This is not always the case; for example, the atmosphere has a higher density along the ground than higher up. Calculated mass density then becomes an expression of average mass density in the area being measured.

Relative mass density
Relative mass density is often defined as the ratio of mass density to two substances, and this unit is thus dimensionless.

Variation in mass density
The density of a substance varies with temperature and pressure. For solids and liquids, this is usually small, but for gases, it can be significant.
Mass density is a physical size, expressed as the mass of a quantity of substance divided by the volume of the substance. Mass density is also called density. Density is usually measured in kg per cubic meter.

The symbol for mass density is \(\rho \) (the Greek letter rho). When the mass is \(m \) and the volume is \(V \), the mass density can be expressed as

\[
\rho = \frac{m}{V}
\]

Density is also referred to as specific weight, but this term is misleading and should be avoided.

The SI unit for density is kg/m³. Derived units that are widely used are kg/dm³ and g/cm³. In the United States, the unit also uses pound/cubic foot (lb/ft³):

1 lb/ft³ = 16.019 kg/m³

The definition of density assumes that the substance is homogeneous. This is not always the case; for example, the atmosphere has a higher density along the ground than higher up. Calculated mass density then becomes an expression of average mass density in the area being measured.

Relative bulk density

Relative mass density is often defined as the ratio of mass density to two substances, and this unit is thus dimensionless.

In the case of liquids, specific densities are often stated in relation to water, while air is often used as a reference in relation to gases.

Variation in mass density

The density of a substance varies with temperature and pressure. For solids and
DENSITY

Mass density is a physical size, expressed as the mass of a quantity of substance divided by the volume of the substance. Mass density is also called density. Density is usually measured in kg per cubic meter.

The symbol for mass density is \(\rho \) (the Greek letter rho). When the mass is \(m \) and the volume is \(V \), the mass density can be expressed as

\[\rho = \frac{m}{V} \]

Density is also referred to as specific weight, but this term is misleading and should be avoided.

The SI unit for density is \(\text{kg} / \text{m}^3 \). Derived units that are widely used are \(\text{kg} / \text{dm}^3 \) and \(\text{g} / \text{cm}^3 \). In the United States, the unit also uses \(\text{pound} / \text{cubic foot} (\text{lb} / \text{ft}^3) \):

\[1 \text{ lb} / \text{ft}^3 = 16.019 \text{ kg} / \text{m}^3 \]

The definition of density assumes that the substance is homogeneous. This is not always the case; for example, the atmosphere has a higher density along the ground than higher up. Calculated mass density then becomes an expression of average mass density in the area being measured.

Relative bulk density

Relative mass density is often defined as the ratio of mass density to two substances, and this unit is thus dimensionless.

In the case of liquids, specific densities are often stated in relation to water, while air is often used as a reference in relation to gases.

Variation in mass density

The density of a substance varies with temperature and pressure. For solids and
Mass density is a physical size, expressed as the mass of a quantity of substance divided by the volume of the substance. Mass density is also called density. Density is usually measured in kg per cubic meter.

The symbol for mass density is ρ (the Greek letter rho). When the mass is m and the volume is V, the mass density can be expressed as

$$\rho = \frac{m}{V}$$

Density is also referred to as specific weight, but this term is misleading and should be avoided.

The SI unit for density is kg/m3. Derived units that are widely used are kg/dm3 and g/cm3. In the United States, the unit also uses pound/cubic foot (lb/ft3):

1 lb/ft$^3 = 16.019$ kg/m3

The definition of density assumes that the substance is homogeneous. This is not always the case; for example, the atmosphere has a higher density along the ground than higher up. Calculated mass density then becomes an expression of average mass density in the area being measured.

Relative bulk density

Relative mass density is often defined as the ratio of mass density to two substances, and this unit is thus dimensionless.

In the case of liquids, specific densities are often stated in relation to water, while air is often used as a reference in relation to gases.

Variation in mass density

The density of a substance varies with temperature and pressure. For solids and...